Monday, December 5, 2022

+91 9930709000

HomeCancer BlogsEncorafenib

Expert Guidance from Cancer Coach

I agree to Terms & Conditions and Privacy Policy of ZenOnco.io
Download App to increase chance of cure

Encorafenib

Encorafenib is a kinase inhibitor used to treat unresectable or metastatic melanoma with specific mutations. Encorafenib is a kinase inhibitor used to treat unresectable or metastatic melanoma with specific mutations.

Encorafenib, also known as BRAFTOVI, is a kinase inhibitor. Encorafenib inhibits the BRAF gene, which encodes for B-raf protein, which is a proto-oncogene involved in various genetic mutations. This protein plays a role in regulating the MAP kinase/ERK signaling pathway, which impacts cell division, differentiation, and secretion. Mutations in this gene, most frequently the V600E mutation, are the most commonly identified cancer-causing mutations in melanoma, and have been isolated in various other cancers as well, including non-Hodgkin lymphoma, colorectal cancer, thyroid carcinoma, non-small cell lung carcinoma, hairy cell leukemia and adenocarcinoma of the lung 6.

On June 27, 2018, the Food and Drug Administration approved encorafenib and Binimetinib (BRAFTOVI and MEKTOVI, Array BioPharma Inc.) in combination for patients with unresectable or metastatic melanoma with a BRAF V600E or V600K mutation, as detected by an FDA-approved test Label

Used in combination with Binimetinib in metastatic melanoma with a BRAF V600E or V600K mutation, as detected by an FDA-approved test.

Encorafenib has shown improved efficacy in the treatment of metastatic melanoma 3.

Encorafenib, a selective BRAF inhibitor (BRAFi), has a pharmacologic profile that is distinct from that of other clinically active BRAFis 7.

Once-daily dosing of single-agent encorafenib has a distinct tolerability profile and shows varying antitumor activity across BRAFi-pretreated and BRAFi-naïve patients with advanced/metastatic stage melanoma 7.

Encorafenib is a kinase inhibitor that specifically targets BRAF V600E, as well as wild-type BRAF and CRAF while tested with in vitro cell-free assays with IC50 values of 0.35, 0.47, and 0.3 nM, respectively. Mutations in the BRAF gene, including BRAF V600E, result in activated BRAF kinases that mahy stimulate tumor cell growth. Encorafenib is able to bind to other kinases in vitro including JNK1, JNK2, JNK3, LIMK1, LIMK2, MEK4, and STK36 and significantly reduce ligand binding to these kinases at clinically achievable concentrations (≤ 0.9 μM) Label.

In efficacy studies, encorafenib inhibited the in vitro cell growth of tumor cell lines that express BRAF V600 E, D, and K mutations. In mice implanted with tumor cells expressing the BRAF V600E mutation, encorafenib induced tumor regressions associated with RAF/MEK/ERK pathway suppression Label.

Encorafenib and binimetinib target two different kinases in the RAS/RAF/MEK/ERK pathway. Compared with either drug alone, co-administration of encorafenib and binimetinib result in greater anti-proliferative activity in vitro in BRAF mutation-positive cell lines and greater anti-tumor activity with respect to tumor growth inhibition in BRAF V600E mutant human melanoma xenograft studies in mice. In addition to the above, the combination of encorafenib and binimetinib acted to delay the emergence of resistance in BRAF V600E mutant human melanoma xenografts in mice compared with the administration of either drug alone

After oral administration, the median Tmax of encorafenib is 2 hours. At least 86% of the dose is absorbed. Administration of a single dose of BRAFTOVI 100 mg (0.2 times the recommended dose) with a high-fat, high-calorie meal (comprised of approximately 150 calories from protein, 350 calories from carbohydrates, and 500 calories from fat) decreased the mean maximum encorafenib concentration (Cmax) by 36% with no effect on AUC (area under the curve)

The blood-to-plasma concentration ratio is 0.58. The geometric mean (CV%) of apparent volume of distribution is 164 L. Encorafenib is 86% bound to human plasma proteins in vitro.

The primary metabolic pathway is N-dealkylation, with CYP3A4 as the main contributor (83%) to total oxidative clearance of encorafenib in human liver microsomes, followed by CYP2C19 (16%) and CYP2D6 (1%)

Following a single oral dose of 100 mg radiolabeled encorafenib, 47% (5% unchanged) of the administered dose was recovered in the feces and 47% (2% unchanged) was recovered in the urine 

New primary malignancies, cutaneous and non-cutaneous, have been observed in patients treated with BRAF inhibitors and can occur with encorafenib Label

In COLUMBUS, a phase 3 safety and efficacy trial Label, cutaneous squamous cell carcinoma (cuSCC), including keratoacanthoma (KA), occurred in 2.6%, and basal cell carcinoma occurred in 1.6% of patients who received BRAFTOVI in combination with binimetinib. The median time to first occurrence of cuSCC/KA was 5.8 months (range 1 to 9 months) 

Tumor promotion in BRAF Wild-Type Tumors has been observed with encofarenib use Label.

Hemorrhage, uveitis, QT interval prolongation are also other adverse events observed while taking this medication 

Encorafenib, when used as a single agent, is associated with an increased risk of certain adverse reactions compared to when BRAFTOVI is used in combination with binimetinib. Grades 3 or 4 dermatologic reactions occurred in 21% of patients treated with BRAFTOVI therapy alone compared to 2% of patients treated with BRAFTOVI in combination with binimetinib .

Advise females with reproductive potential of the potential risk to a fetus. Advise females of reproductive potential to use effective non-hormonal contraception during treatment with BRAFTOVI and for 2 weeks after the final dose

Encorafenib

Expert Guidance from Cancer Coach

I agree to Terms & Conditions and Privacy Policy of ZenOnco.io

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Related Articles